-
Получены ослабленные условия несмещенности и конечности дисперсии весовых векторных оценок метода Монте-Карло в случае нестоксовского свободного члена сопряженного векторного уравнения переноса.
-
Впервые получены условия несмещенности и конечности дисперсии весовых оценок производных по параметрам, входящим в матричное ядро уравнения переноса.
-
Проведено исследование спектрального радиуса ρ матрично-интегрального оператора Kp, определяющего матрицу вторых моментов стандартной векторной оценки метода Монте-Карло. Построен алгоритм оценки спектрального радиуса оператора Kp методом Монте-Карло на основе итераций соответствующей резольвенты. С помощью расчетов, а также приближенно аналитически, показано, что величина ρ(Kp) для ограниченной среды приближенно равна произведению спектральных радиусов оператора, соответствующего переносу излучения без поляризации и оператора, соответствующего переносу излучения в бесконечной однородной среде, который вычислен для молекулярного и тестового аэрозольного типов рассеяния.
-
Впервые получены теоретические выводы о конечности дисперсий оценок функционалов при использовании различных весовых модификаций метода Монте-Карло. Проведены численные эксперименты по исследованию поведения статистических оценок и их дисперсий при значениях коэффициента поглощения в среде близких к критическим, для которых теоретически дисперсия оценок бесконечна.
-
Впервые получены выражения для вычисления производных весовых оценок по коэффициентам поглощения, рассеяния и аэрозольного рассеяния в неоднородной атмосфере с учетом поляризации.
-
Предложены способы уменьшения дисперсии оценок производных, основанные на методе рандомизации и билинейном представлении оцениваемых функционалов.
-
Осуществлена численная реализация разработанных автором алгоритмов с использованием модифицированной двойной локальной оценки для сферической геометрии атмосферы.
-
Впервые получены условия применимости разработанных алгоритмов к решению задачи восстановления высотного хода коэффициента аэрозольного рассеяния по наблюдениям поляризационных характеристик рассеянного солнечного излучения с поверхности Земли в сумерках.
-
Для решения задачи восстановления индикатрисы рассеяния атмосферы по наземным наблюдениям яркости поляризованного излучения в альмукантарате Солнца предложен новый итерационный метод, эффективно учитывающий отражение от подстилающей поверхности. Дано теоретическое обоснование сходимости предложенного метода, подтвержденное численными расчетами.
-
На основе теории параметрического дифференцирования векторных оценок разработан алгоритм вычисления матрицы Яко-би для построенного итерационного метода. Численные эксперименты позволили обосновать сходимость этого метода для различных параметров среды и также показали целесообразность учета поляризации при восстановлении индикатрисы.
-
Разработаны и обоснованы новые алгоритмы вычисления параметров временн´ой асимптотики интенсивности многократно рассеянного поляризованного излучения. Первый алгоритм, основанный на реализации итераций резольвенты соответствующего оператора переноса, позволяет оценивать параметр экспоненциальной асимптотики. Второй алгоритм, основанный на параметрическом дифференцирования по времени специального представления решения нестационарного уравнения переноса с поляризацией, позволяет оценивать параметры как экспоненциальной, так и степенной асимптотик.
-
Впервые аналитически получено значение экспоненциальной временн´ой асимптотики интенсивности поляризованного излучения для бесконечного однородного пространства.
-
С помощью прецизионных расчетов впервые показано, что для ограниченных сред и различных типов рассеяния значения параметров экспоненциальной временной асимптотики в случае учета поляризации и без ее учета не совпадают, то есть деполяризация потока излучения несколько запаздывает относительно перехода к асимптотике.
-
Получены значения параметров асимптотик для различных функционалов от интенсивности поляризованного излучения, в том числе для излучения, являющегося помехой обратного рассеяния при дистанционном зондировании полубесконечной атмосферы. Показано, что в этом случае тип рассеяния и поляризация не влияют на параметры асимптотики с точностью до статистической погрешности.
[2] Егорова Л. А., Кардополов В. И., Павлов В. Е., Рспаев Ф. К., Ухинов С. А. Поляризация многократно рассеянного света сумеречного неба в зените // Известия РАН. Физ. атмосф. и океана. 1994. Т. 30, № 4. С. 478–484.
[3] Ukhinov S. A., Yurkov D. I. Monte Carlo method of calculating the derivatives of polarized radiation // Rus. J. Numer. Anal. Math. Modelling. 1998. V. 13, N 5, P. 425–444.
[4] Ukhinov S. A., Yurkov D. I. Computation of the parametric derivatives of polarized radiation and the solution of inverse atmosphere optic problems // Russ. J. Numer. Anal. Math. Modelling. 2002. V. 17, N 3. P. 283–303.
[5] Ухинов С. А., Юрков Д. И. Оценки методов Монте-Карло для параметрических производных поляризованного излучения // Сиб. журн. вычисл. матем. 2002. Т. 5, № 1. С. 40–56.
[6] Михайлов Г. А., Ухинов С. А.,Чимаева А. С. Дисперсия стан-дартной векторной оценки метода Монте-Карло в теории пе-реноса поляризованного излучения // Журн. вычисл. матема-тики и мат. физики. 2006. Т. 46, № 11. С. 2199–2212.
[7] Mikhailov G. A., Tracheva N. V., Ukhinov S. A. Time asymptotics of the intensity of polarized radiation // Rus. J. Numer. Anal. Math. Modelling. 2007. V. 22, N 5. P. 487–503.
[8] Михайлов Г. А., Трачева Н. В., Ухинов С. А. Исследование асимптотики интенсивности поляризованного излучения ме-тодом Монте-Карло // Докл. Академии Наук. 2007. Т. 414, № 6. С. 727–731.
[9] Михайлов Г. А., Трачева Н. В., Ухинов С. А. Исследование временной асимптотики интенсивности поляризованного из-лучения методом Монте-Карло // Журн. вычисл. математики и мат. физики. 2007. Т. 47, № 7. С. 1264–1275.
[10] Mikhailov G. A., Tracheva N. V., Ukhinov S. A. The Monte Carlo method and analytic averaging for estimation of parameters of polarized radiation asymptotics // Rus. J. Numer. Anal. Math. Modelling. 2008, V. 23, N 3. P. 239–250.
[11] Михайлов Г. А., Ухинов С. А., Чимаева А. С. Алгоритмы метода Монте-Карло для восстановления индикатрисы рас-сеяния с учетом поляризации // Докл. Академии Наук. 2008. Т. 423, № 2. С. 161–164.
[12] Chimaeva A. S., Mikhailov G. A., Ukhinov S. A. Monte Carlo algorithms for reconstruction of the scattering indicatrix adjusted for polarization // Rus. J. Numer. Anal. Math. Modelling. 2009. V. 24, N 5. P. 455–465.
[13] Михайлов Г. А., Трачева Н. В., Ухинов С. А. Оценка мето¬дом Монте-Карло параметров асимптотики помехи обрат¬ного рассеяния с учетом поляризации // Оптика атмосферы и океана. 2010. T. 23, № 9. С. 739–748.