-
Предложенная дискретная модель управляемой фоторефрактивной Брэгговской решетки позволяет однозначно решать не только прямую задачу вычисления спектральной характеристики решётки по заданному набору скачков фазы и эффективного периода решетки, но и обратную задачу определения набора скачков фазы и эффективного периода решетки исходя из заданной спектральной характеристики. Неоднозначность обратной задачи устраняется за счёт выбора диапазона возможных изменений параметров решётки, связанных с механизмом формирования скачков её фазы и периода.
- В диэлектрических волноводах на подложках фоторефрактивных кристаллов изменение условий дифракции оптического излучения и управление спектральной характеристикой Брэгговких решеток реализуется путем формирования управляемых скачков эффективного показателя преломления волновода за счет электрооптического эффекта без существенного влияния на модовый состав распространяющегося оптического излучения.
- Существует взаимная ориентация кристаллографических осей подложки фоторефрактивного сегнетоэлектрика и сформированного в ней оптического волновода, одновременно обеспечивающая высокий эффективный электрооптический коэффициент в геометрии поперечного электрооптического эффекта, эффективную голографическую запись фоторефрактивной Брэгговской решетки, а также низкий уровень оптических потерь и низкую степень преобразования поляризации внутри анизотропного оптического волновода.
- При заданных температурах и временах протонного обмена на подложках ниобата лития ширина фотолитографической маски определяет общее количество замещенных на протоны ионов лития и может эффективно использоваться как дополнительная степень свободы для контроля профиля интенсивности моды канального волновода, влияя как на ширину, так и на глубину модового пятна. Для заданного размера модового пятна существует набор технологических параметров (температура и время протонного обмена, температура и время отжига), при которых размер пятна волноводной моды практически не зависит от изменения ширины маски в диапазоне ±1÷1,5 мкм.
- Металлическая пленка алюминия с диэлектрическим буферным слоем оксида алюминия на поверхности канального оптического волновода в ниобате лития обладает свойством выделения поперечной электрической (ТЕ) волноводной моды, что связано с процессом возбуждения поперечной магнитной (ТМ) модой быстро затухающих поверхностных плазмон-поляритонных волн на границе металл диэлектрик. Существует оптимальная толщина буферного слоя, обеспечивающая высокий коэффициент связи волноводной ТМ моды с поверхностной плазмон-поляритонной волной, а также длину биений при их взаимодействии, превышающую характерную длину затухания плазмон-поляритонов.
- Безынерционность электрооптического эффекта и интегрально-оптическая конфигурация управляемых фоторефрактивных Брэгговских решеток на подложках ниобата лития позволяют осуществлять высокочастотную модуляцию и спектральное кодирование оптических сигналов, а также управлять временным сдвигом оптических импульсов.
2.Petrov M.P., Shamray A.V., Petrov V.M. Spectral and Electric field multiplexing of Volume Holograms and the potential of these techniques for Holographic Memory // Optical Memory & Neural Networks. – 1998. – Vol.7, N1 – P.19-35.
3.Shamray A.V., Petrov V.M., Petrov M.P. Electric field multiplexing in volume LiNbO3 holograms // Proc. SPIE. – 1998. – Vol.337 – P. 75-83.
4.Петров М.П., Шамрай А.В., Петров В.М. Электрически управляемая дифракция света на отражательных голограммах в кристалле LiNbO3 // ФТТ. – 1998. – т.40, вып.6 – C.1038-1041.
5.Petrov M.P., Shamray A.V., Petrov V.M., J. Sanchez Mondragon. Electric field selectivity of reflection volume holograms in LiNbO3 // Opt. Comm. – 1998. – Vol. 153 – P.305-308.
6.Шамрай А.В., Петров М.П., Петров В.М. Перекрёстные помехи, вызванные некогерентностью считывающего света при спектральном мультиплексировании отражательных голограмм // ЖТФ. – 1999. – т.44. вып.9 – C.1098-1102.
7.Chamrai A.V., Petrov M.P., Petrov V.M. Optimal configuration of electric field multiplexing of volume holograms in photorefractive ferroelectrics // OSA TOPS, Advances in Photorefractive Materials, Effects and Devices, – 1999 - Vol. 27, P. 515 - 521.
8.Petrov V.M., Denz C., Shamray A.V., Petrov M.P., Tschudi T. Electric field selectivity and multiplexing of volume holograms in LiNbO3 // Appl. Phys.B – 2000 – Vol.71 – P.43-46.
9.Petrov V.M., Denz C., Chamrai A.V., Petrov M.P. Tschudi T. The effect of a photovoltaic field on the Bragg condition for volume holograms in LiNbO3 // Appl. Phys.B – 2001. – Vol.72 – P.701-705.
10.Petrov V.M., Denz C., Tschudi T., Chamrai A.V., Petrov M.P., Effect of a photovoltaic field on the Bragg condition in LiNbO3 // OSA TOPS, Advances in Photorefractive Materials, Effects and Devices – 2001. – Vol.62 – P.464-469.
11.Grachev A.I., Chamrai A.V., Petrov M.P., Developing of the thermally fixed holograms in the case of photovoltaic mechanism of recording // OSA TOPS, Advances in Photorefractive Materials, Effects and Devices – 2001. – Vol.62 – P.203-211.
12.Petrov V.M., Denz C., Сhamrai A.V., Petrov M.P., Tschudi T. Electrically controlled volume LiNbO3 holograms for wavelength demultiplexing systems // Optical Materials. – 2001. – Vol.18 – P.191-194.
13.Petrov M.P., Petrov V.M., Chamrai A.V., Denz C., Tschudi T. Electrically controlled holographic optical filter // Proc. of 27-th European Conference on Optical Communication “ECOC’01-Amsterdam” – 2001. – Vol.4 – P.628-629.
14.Петров М.П., Шамрай А.В., Петров В.М., Паугурт А.П. Способ записи голографических дифракционных решеток в объеме фотчувствительного материала. Патент РФ № 2199769 (приоритет от 27.02.2003).
15.Петров М.П., Шамрай А.В., Петров В.М., Паугурт А.П. Способ спектральной фильтрации оптического излучения. Патент РФ № 2202118 (приоритет от 10.04.2003).
16.Petrov V.M., Chamrai A.V., Petter J., Tschudi T., Petrov M.P. Tunable optical filters based on photorefractive gratings // Proc. SPIE – 2003. – Vol.5135 – P.123-129.
17.Petrov V.M., Lichtenberg S., Petter J., Tschudi T., Chamrai A.V., Petrov M.P. A dynamic wavelength Bragg-filter with an on-line controllable transfer function // OSA TOPS, Advances in Photorefractive Materials, Effects and Devices – 2003. – Vol.87 – P.564-570.
18.Petrov V.M., Lichtenberg S., Petter J., Tschudi T., Chamrai A.V. Electrically tunable and switchable photorefractive optical filters // OSA TOPS, Advances in Photorefractive Materials, Effects and Devices – 2003. – Vol.87 – P.582-587.
19.Petrov V.M., Lichtenberg S., Petter J., Tschudi T., Chamrai A.V. Adaptive interferometer with a femtometer-band resolution based on volume photorefractive holograms // OSA TOPS, Advances in Photorefractive Materials, Effects and Devices – 2003. – Vol.87 – P.588-594.
20.Petrov V.M., Lichtenberg S., Petter J., Tsсhudi T., Chamrai A.V., Bryksin V.V., Petrov M.P. Optical on-line controllable filters based on photorefractive crystals // J. Opt. A.: Pure Appl. Opt. – 2003. – Vol.5 – P.471-476.
21.Petrov V.M., Lichtenberg S., Chamray A.V., Petter J., Tschudi T. Controllable Fabry – Perot interferometer based on dynamic volume holograms // Thin Solid Films – 2004 – Vol.450, N1 – P.178-182.
22.Петров М.П., Шамрай А.В., Козлов А.С., Ильичев И.В. Электрически управляемый интегрально оптический фильтр // Письма в ЖТФ. – 2004. – т.30,– C.75-81.
23.Lichtenberg S., Petrov V.M., Petter J., Tsсhudi T., Chamrai A.V., Petrov M.P. Polarization dependence of two-wave mixing in counterpropagating geometry in sillenite crystals // Ukranian Journal of Physics – 2004 - Vol. 5 - P. 467 - 472.
24.Петров В.М., Лихтенберг С., Шамрай А.В. Спектральный оптический фильтр с управляемой передаточной характеристикой на основе динамических объемных голограмм в титанате бария // ЖТФ. – 2004. – т.74,– C.56-60.
25.Петров М.П., Шамрай А.В., Ильичев И.В., Козлов А.С. Оптический элемент и способ управления его спектральной характеристикой, система оптических элементов и способ управления системой. Патент РФ № 2248022 (приоритет от 10.03.2005).
26.Shamray A.V., Ilichev I.V., Kozlov A.S., Petrov M.P. Electrically controlled integrated optical Bragg gratings for wavelength switching and wavelength stabilization // OSA TOPS, Advanced Solid - State Photonics – 2005. – Vol.98 – P.703-707.
27.Shamray A.V., Ilichev I.V., Kozlov A.S., Petrov M.P. Electrically controlled integrated optical ragg gratings for wavelength switching and wavelength stabilization // OSA TOPS, Advances in Photorefractive Materials, Effects and Devices – 2005. – Vol.99 – P.782-787.
28.Shamray A.V., Kozlov A.S., Ilichev I.V., Petrov M.P. A novel integrated optical device for wavelength control in optical telecommunication systems// Proc. 2nd Int. Conference on Advanced Optoelectronics and Lasers, CAOL 2005, ISBN: 0-7803-91130-6 – 2005 – Vol.2 - P.172 – 175.
29.Шамрай А.В., Ильичев И.В., Козлов А.С., Петров М.П. Новый метод управления формой спектральной характеристики Брэгговских решеток в электрооптических материалах // Квантовая электроника – 2005 - т. 35 – С.734-740.
30.Shamray A.V., Kozlov A.S., Ilichev I.V., Petrov M.P. A novel integrated optical modu-lator for frequency shift keying of optical signals // IEEE Proc, 17th Int. Crimean Conference “Microwave & Telecommunication Technology” (CriMiCo’2007) ISBN: 978-966-335-014-1 – 2007 - C. 916 – 917.
31.Arora P., Il`ichev I.V., Chamray A.V., Kozlov A.S., Petrov V.M., Petter J., Tschudi T. Integrated optical filter with fast electrically reconfigurable transfer function // Proc OFC/NFOEC Optical Fiber Commun. Nat. Fiber Optics Eng. Conf. - 2007 - P.#4348408-#4348411
32.Шамрай А.В., Ильичев И.В., Козлов А.С., Петров М.П. Демонстрация частотной модуляции оптических сигналов с высоким параметром девиации частоты // Квантовая электроника – 2008 - т. 38 № 3 – С.273-275.
33.Shamray A.V., Kozlov A.S., Ilichev I.V., Petrov M.P. A novel modulation format based on the change of an optical spectrum shape // Proc. SPIE. – 2008 - Vol. 6896, 68960V.
34.Shamray A.V., Kozlov A.S., Ilichev I.V., Petrov M.P. A novel integrated optical device for spectral coding in OCDMA networks // Proc. SPIE. – 2008 - Vol. 6996, 69961J.
35.Shamray A.V., Kozlov A.S., Ilichev I.V., Petrov M.P. A novel integrated optical scanning filter for interrogation of fiber Bragg grating sensors // Proc. 8th Int. Conference on Optical Technologies for Sensing and Measurements, OPTO 2008 Photonics Metrology, ISBN: 978-3-9810993-3-1 – 2008 -P.167 – 170.
36.Ильичев И.В., Козлов А.С., Гаенко П.В., Шамрай А.В. Оптимизация технологии изготовления канальных протонообменных волноводов в кристаллах ниобата лития // Квантовая электроника – 2009 – т. 39 № 1 – С.98-104.
37.Shamray A.V., Kozlov A.S., Ilichev I.V. Application of controllable photorefractive Bragg gratings for spectral coding of optical signals // Proc. Topical Meeting Advances in Photorefractive Materials, Effects and Devices, Control of Light and Matter, ISBN: 978-3-00-027892-1 – 2009 -P.234 – 235.
38.Ильичев И.В., Тогузов Н.В., Шамрай А.В. Плазмон-поляритонный поляризатор на поверхности канальных одномодовых волноводов в ниобате лития // Письма в ЖТФ – 2009 -т. 35 – С.97-103.
39.Ильичев И.В., Тогузов Н.В., Шамрай А.В. Оптимальная конфигурация пленочного интегрально-оптического поляризатора на подложках ниобата лития// НТВ СПбГПУ– 2009 -т. 83 – С. 103 - 107.
40.Shamray A.V., Kozlov A.S., Ilichev I.V., Petrov V.M. Controllable holographic optical filters in photorefractive crystals // Journal of Holography and Speckle – 2009 - Vol. 5 – P.1–10.