Научная тема: «ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ВРАЩАЮЩЕЙСЯ ЖИДКОСТИ В КОНТЕЙНЕРАХ С РЕБРАМИ»
Специальность: 01.01.03
Год: 2012
Основные научные положения, сформулированные автором на основании проведенных исследований:
  1. Для первой и второй краевых задач о малых колебаниях вращающейся идеальной жидкости в случае, когда область, занимаемая жидкостью, симметрична относительно оси вращения, получены разложения пространств соленоидальных векторов, которым принадлежат решения этих задач, в бесконечные ортогональные суммы их некоторых подпространств, и доказано, что изучение спектров операторов, связанных с рассматриваемыми задачами, может быть сведено к изучению спектров их ограничений на указанные подпространства, что позволяет вместо возникающих здесь известных трехмерных краевых задач для гиперболических уравнений рассматривать их аналоги на плоскости.
  2. Исследована первая краевая задача, являющаяся обобщением известной задачи Дарбу и заключающаяся в нахождении для гиперболического уравнения в плоской области D, ограниченной двумя гладкими кривыми, выходящими из одной точки и целиком лежащими в характеристическом угле с вершиной в этой точке, и отрезками характеристик, обобщенного решения из пространства С.Л.Соболева W21(D), принимающего на этих кривых заданные значения; доказана корректность этой задачи.
  3. Исследована вторая краевая задача для гиперболических уравнений с двумя переменными, заключающаяся в нахождении обобщенного решения гиперболического уравнения, принадлежащего пространству С.Л.Соболева W21(D), где плоская область D ограничена двумя гладкими кривыми, выходящими из одной точки и целиком лежащими в характеристическом угле уравнения с вершиной в этой точке, и отрезками характеристик, - такого, которое удовлетворяет граничным условиям с частными производными, заданным на этих кривых, и принимает некоторое наперед заданное значение в вершине угла; установлены условия, касающиеся расположения этих кривых и коэффициентов при частных производных в граничных выражениях, при которых данная задача корректна.
  4. Получен новый метод изучения поведения вращающейся идеальной несжимаемой жидкости, суть которого заключается в исследовании спектральных задач соответствующих операторов с помощью теории корректной разрешимости первой и второй краевых задач для гиперболических уравнений на плоскости, являющихся обобщениями классических задач типа Гурса и Дарбу. Этот метод применим к задачам в трехмерных областях специального вида с кусочно-гладкой границей, содержащей ребра и, быть может, конические точки, и к соответствующим двумерным областям с угловыми точками.
  5. С помощью разработанного нового метода получено объяснение качественно различного поведения вращающейся жидкости в сферических и конических контейнерах, наблюдаемого экспериментально. Построены конкретные примеры осесимметричных трехмерных областей с ребрами, для которых не пуст непрерывный спектр инерционных волн, а также описан некоторый класс таких областей; доказано, в частности, что всякая осесимметричная область, ограниченная коническими поверхностями, принадлежит этому классу независимо от взаимного расположения конусов и их углов раствора, что означает обязательное существование не почти-периодических движений вращающейся жидкости в таких контейнерах. Приведены примеры, доказывающие существенную неустойчивость характера поведения жидкости по отношению к малым деформациям границы контейнера. Аналогичные результаты получены для модельной двумерной задачи.
  6. С помощью разработанного нового метода исследования рассматриваемых задач для плоской треугольной области впервые в явном виде построены точные решения нестационарной двумерной модельной задачи, исследованы свойства этих решений, доказано, что их L2-нормы убывают при t → ∞.
  7. Впервые установлено, что существуют такие решения нестацио нарной двумерной модельной задачи, L2-нормы которых убывают при t → ∞ быстрее любой отрицательной степени t, а вся энергия, которой они обладают, со временем оказывается почти полностью сосредоточенной в сколь угодно малых окрестностях угловых точек. Это объясняет некоторые обнаруженные в известных экспериментальных исследованиях особенности поведения вращающейся жидкости в контейнерах рассматриваемых конфигураций, что не могло быть сделано ранее.
Список опубликованных работ
[1] Троицкая С. Д. О спектре одной задачи С.Л.Соболева // Успехи матем. наук. — 1992. — Т. 47, № 5. — С. 191–192.

[2] Троицкая С. Д. О не почти периодичности решений задачи С.Л.Соболева в областях с ребрами // Изв. РАН. Сер. матем. — 1994. — Т. 58, № 4. — С. 97–124.

[3] Троицкая С. Д. Об одной корректной краевой задаче для гиперболических уравнений с двумя независимыми переменными // Успехи матем. наук. — 1995. — Т. 50, № 4. — С. 124–125.

[4] Троицкая С. Д. О единственности обобщенного решения задачи Дарбу // Успехи матем. наук. — 1996. — Т. 51, № 5. — С. 149–150.

[5] Троицкая С. Д. О спектре кориолисова оператора в осесимметрич-ных областях с ребрами // Матем. заметки. — 1996. — Т. 60, № 2. — С. 304–309.

[6] Троицкая С. Д. О непрерывном спектре задачи Соболева // Успехи матем. наук. — 1998. — Т. 53, № 4. — С. 158.

[7] Троицкая С. Д. Об одной краевой задаче для гиперболических уравнений // Известия РАН. Сер. матем. — 1998. — Т. 62, № 2. — С. 194– 225.

[8] Троицкая С. Д. О первой краевой задаче для гиперболического уравнения на плоскости // Матем. заметки. — 1999. — Т. 65, № 2. — С. 294–306.

[9] Троицкая С. Д. Построение точных решений модельной задачи о колебаниях вращающейся жидкости в областях с угловыми точками // Вестник МГУ, Серия 3. Физика. Астрономия. — 2010. — № 6. — С. 14–20.

[10] Троицкая С. Д. Свойства решений модельной задачи о колебаниях вращающейся жидкости в областях с угловыми точками // Вестник МГУ, Серия 3. Физика. Астрономия. — 2010. — № 6. — С. 21–27.

[11] Troitskaya S. D. Behavior as t → ∞ of solutions of a problem in mathematical physics // Russ. J. Math. Phys. — 2010. — Vol. 17, no. 3. — Pp. 342–362.