Научное направление:
«Управление движением различного рода движущихся автономных объектов в различных средах (в воздухе, на воде и под водой) для обеспечения улучшенной ситуационной осведомленности»
Шифры научных специальностей, в рамках которых разрабатывалось данное научное направление:
Краткая аннотация научного направления:
Ситуационная Осведомленность (СО) относится к осведомленности, которая иногда случается в определенных ситуациях.
СО была признана критической основой успешного принятия решений для широкого спектра сложных и динамичных систем, включая операции по реагированию на чрезвычайные ситуации и военные операции.
Автономное движение представляет собой сложную, но важную задачу для рассматриваемых моделей для достижения высокого уровня автономии в неблагоприятных условиях.
Предложены основные подходы к математическому моделированию и имитационному моделированию систем управления на основе уравнений движения для различных типов моделей, таких как винтокрылые летательные аппараты, автономные подводные аппараты и надводные суда с акцентом на моделирование реалистичной динамики для быстрой СО.
Представлены результаты исследований по изучению контроля автономного движения для различных типов моделей, которые делают возможным такой сценарий задачи СО, как «идти-искать-найти-вернуться".
Эффективность предлагаемых методов исследования подтверждена в имитационных тестах для выбранных моделей управления.
Из результатов тестов видно, что эти модели продемонстрировали преимущество в достижении хорошей маневренности при управляемом движении во время миссий и хорошей эффективности для быстрой стабилизации двигателей во время маневров, следовательно, быстрая СО с экономией энергии аккумуляторов достигается во время миссий, и продолжительность миссий может быть более продолжительной.
СО была признана критической основой успешного принятия решений для широкого спектра сложных и динамичных систем, включая операции по реагированию на чрезвычайные ситуации и военные операции.
Автономное движение представляет собой сложную, но важную задачу для рассматриваемых моделей для достижения высокого уровня автономии в неблагоприятных условиях.
Предложены основные подходы к математическому моделированию и имитационному моделированию систем управления на основе уравнений движения для различных типов моделей, таких как винтокрылые летательные аппараты, автономные подводные аппараты и надводные суда с акцентом на моделирование реалистичной динамики для быстрой СО.
Представлены результаты исследований по изучению контроля автономного движения для различных типов моделей, которые делают возможным такой сценарий задачи СО, как «идти-искать-найти-вернуться".
Эффективность предлагаемых методов исследования подтверждена в имитационных тестах для выбранных моделей управления.
Из результатов тестов видно, что эти модели продемонстрировали преимущество в достижении хорошей маневренности при управляемом движении во время миссий и хорошей эффективности для быстрой стабилизации двигателей во время маневров, следовательно, быстрая СО с экономией энергии аккумуляторов достигается во время миссий, и продолжительность миссий может быть более продолжительной.
Аннотации трех наиболее значимых публикаций:
1. Igor Astrov (Астров Игорь Иннокентьевич), Enhanced Situational Awareness for Autonomous Underwater Vehicles (Улучшенная ситуационная осведомленность для автономных подводных аппаратов). Fort Lauderdale, Florida, USA: Llumina Press, ISBN: 978-1-62550-107-3, Library of Congress Control Number: 2013917323, 2013, 124 pp.
Abstract
The need for accurate and directionally stable diving for AUV class autonomous vehicles has increased dramatically in critical situations such as real-time search-and-rescue operations with the existence of system disturbances, cross-flow, and coupling effects requiring fast situational awareness. Situational awareness is simply being aware of what is going on around you. Situational awareness in the underwater battlespace allows for significantly enhanced performance in torpedo defense, mine avoidance, anti-submarine warfare, and a multitude of other aspects of undersea engagement. This book provides basic approaches for the modeling and simulation of control systems on the basis of state-space equations of motion for various types of models of AUVs for fast situational awareness. The effectiveness of this research technique has been verified in the field in diving simulation tests on chosen models of AUVs using the software package Simulink. From the simulation results, it can be seen that the AUV models tested are stable in the presence of high noise, and it can also be concluded that fast situational awareness in similar AUV systems along with economy in battery energy usage can be achieved during underwater missions. This turns the content of this book into a valuable resource for researchers, academics, graduate and postgraduate students, and for those specialists in research establishments who are concerned with AUVs.
2. Igor Astrov (Астров Игорь Иннокентьевич), Flight Control of Unmanned Rotorcrafts for Enhanced Situational Awareness (Управление полетом беспилотных винтокрылых летательных аппаратов для улучшенной ситуационной осведомленности). Hauppauge, New York, USA: Nova Science Publishers, Series: Robotics Research and Technology; Defense, Security and Strategies; ISBN: 978-1-61942-311-4 (Softcover), ISBN: 978-1-63321-199-5 (ebook), Library of Congress Control Number: 2014020787, 2014, 167 pp.
Abstract
The need for highly reliable and stable maneuvers for unmanned rotorcrafts (URs) class of unmanned aerial vehicle (UAVs) has increased morbidly for critical situations in real-time search-and-rescue operations for fast situational awareness (SA). A rotorcraft is a heavier-than-air flying machine that obtains its lift from rotors. SA is simply being aware of what is going on around you. This book provides basic approaches for the modeling and simulation of control systems on the basis of equations of motion for various types of models of rotorcrafts (miniature helicopter, intermediate helicopter, coaxial rotor/ducted fan mini-UAV, trirotor mini-UAV, vectored thrust mini-UAV, quadrotor mini-UAV, X4-flyer mini-UAV, eight-rotor mini-UAV) with emphasis on the modeling and simulation of realistic dynamics for fast SA. The effectiveness of the proposed research technique has been verified in field of flight simulation tests for chosen control models of the URs using software package Simulink. From the simulation results it can be seen that the UR models demonstrated an advantage in achieving good maneuverability in controlled flight during missions and good performance for fast stabilization of engines during maneuvers, consequently, fast SA with economy in energy of batteries can be asserted during missions, and the duration of missions can be longer.
3. Astrov, I. (Астров Игорь Иннокентьевич), M. Pikkov and R. Paluoja, "Motion control of an autonomous surface vessel for enhanced situational awareness" (Управление движением автономного надводного судна для улучшенной ситуационной осведомленности), International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, ISSN: 1307-6892, vol. 7, No 11, pp. 1203-1208, 2013.
Abstract
This paper focuses on the critical components of the situational awareness (SA), the controls of position and orientation of an autonomous surface vessel (ASV). Moving of vessel into desired area in particular sea is a challenging but important task for ASVs to achieve high level of autonomy under adverse conditions. With the SA strategy, the approach motion by neural control of an initial stage of an ASV trajectory using neural network predictive controller and the circular motion by control of yaw moment in the final stage of trajectory were proposed. This control system has been demonstrated and evaluated by simulation of maritime maneuvers using software package Simulink. From the simulation results it can be seen that the fast SA of similar ASVs with economy in energy can be asserted during the maritime missions in search-and-rescue operations.
Abstract
The need for accurate and directionally stable diving for AUV class autonomous vehicles has increased dramatically in critical situations such as real-time search-and-rescue operations with the existence of system disturbances, cross-flow, and coupling effects requiring fast situational awareness. Situational awareness is simply being aware of what is going on around you. Situational awareness in the underwater battlespace allows for significantly enhanced performance in torpedo defense, mine avoidance, anti-submarine warfare, and a multitude of other aspects of undersea engagement. This book provides basic approaches for the modeling and simulation of control systems on the basis of state-space equations of motion for various types of models of AUVs for fast situational awareness. The effectiveness of this research technique has been verified in the field in diving simulation tests on chosen models of AUVs using the software package Simulink. From the simulation results, it can be seen that the AUV models tested are stable in the presence of high noise, and it can also be concluded that fast situational awareness in similar AUV systems along with economy in battery energy usage can be achieved during underwater missions. This turns the content of this book into a valuable resource for researchers, academics, graduate and postgraduate students, and for those specialists in research establishments who are concerned with AUVs.
2. Igor Astrov (Астров Игорь Иннокентьевич), Flight Control of Unmanned Rotorcrafts for Enhanced Situational Awareness (Управление полетом беспилотных винтокрылых летательных аппаратов для улучшенной ситуационной осведомленности). Hauppauge, New York, USA: Nova Science Publishers, Series: Robotics Research and Technology; Defense, Security and Strategies; ISBN: 978-1-61942-311-4 (Softcover), ISBN: 978-1-63321-199-5 (ebook), Library of Congress Control Number: 2014020787, 2014, 167 pp.
Abstract
The need for highly reliable and stable maneuvers for unmanned rotorcrafts (URs) class of unmanned aerial vehicle (UAVs) has increased morbidly for critical situations in real-time search-and-rescue operations for fast situational awareness (SA). A rotorcraft is a heavier-than-air flying machine that obtains its lift from rotors. SA is simply being aware of what is going on around you. This book provides basic approaches for the modeling and simulation of control systems on the basis of equations of motion for various types of models of rotorcrafts (miniature helicopter, intermediate helicopter, coaxial rotor/ducted fan mini-UAV, trirotor mini-UAV, vectored thrust mini-UAV, quadrotor mini-UAV, X4-flyer mini-UAV, eight-rotor mini-UAV) with emphasis on the modeling and simulation of realistic dynamics for fast SA. The effectiveness of the proposed research technique has been verified in field of flight simulation tests for chosen control models of the URs using software package Simulink. From the simulation results it can be seen that the UR models demonstrated an advantage in achieving good maneuverability in controlled flight during missions and good performance for fast stabilization of engines during maneuvers, consequently, fast SA with economy in energy of batteries can be asserted during missions, and the duration of missions can be longer.
3. Astrov, I. (Астров Игорь Иннокентьевич), M. Pikkov and R. Paluoja, "Motion control of an autonomous surface vessel for enhanced situational awareness" (Управление движением автономного надводного судна для улучшенной ситуационной осведомленности), International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, ISSN: 1307-6892, vol. 7, No 11, pp. 1203-1208, 2013.
Abstract
This paper focuses on the critical components of the situational awareness (SA), the controls of position and orientation of an autonomous surface vessel (ASV). Moving of vessel into desired area in particular sea is a challenging but important task for ASVs to achieve high level of autonomy under adverse conditions. With the SA strategy, the approach motion by neural control of an initial stage of an ASV trajectory using neural network predictive controller and the circular motion by control of yaw moment in the final stage of trajectory were proposed. This control system has been demonstrated and evaluated by simulation of maritime maneuvers using software package Simulink. From the simulation results it can be seen that the fast SA of similar ASVs with economy in energy can be asserted during the maritime missions in search-and-rescue operations.