RAE.RU
Энциклопедия
ИЗВЕСТНЫЕ УЧЕНЫЕ
FAMOUS SCIENTISTS
Биографические данные и фото 15692 выдающихся ученых и специалистов
Логин   Пароль  
Регистрация Забыли пароль?
 

Мамедов Ильгар Гурбат оглы


Мамедов Ильгар Гурбат оглы

Учёная степень: Доктор физико-математических наук

Ученое звание: Профессор НАН Азербайджана

Научное направление: Физико-математические науки

Регион: Азербайджан

Индекс цитирования научной биографии: 0 (по количеству внешних ссылок)

Рейтинг: 79 (по количеству просмотров анкеты за последний месяц)

СЕРТИФИКАТ участника энциклопедии "Известные Ученые"

Тема кандидатской (PhD) диссертации:

название и шифр специальности- 01.01.02 - «Дифференциальные уравнения, динамические системы и оптимальное управление»

название темы-

Корректная разрешимость некоторых краевых задач и необходимые условия оптимальности в процессах, описываемых гиперболическими уравнениями

Тема докторской диссертации:

название и шифр специальности-

- 1211.01 – «Дифференциальные уравнения» и 1214.01 – «Динамические системы и оптимальное управление»

название темы-

Решение многомерных локальных и нелокальных краевых задач для гиперболических уравнений высокого порядка с негладкими коэффициентами и их применение к задачам оптимального управления

Научная биография:

Окончил с отличием механико-математический факультет Бакинского государственного университета в 1994 г. (кафедра математические методы теории управления). Аспирант по специальности дифференциальных уравнений в Бакинском государственном университете (кафедра математические методы теории управления) — 1994–1998 гг. В 1995 г. — младший научный сотрудник в Институте кибернетики АН Азербайджана. В 2004 г. — научный сотрудник в Институте кибернетики НАН Азербайджана. В 2005 г. — старший научный сотрудник в Институте кибернетики НАН Азербайджана. С 2009 г. по настоящее время — ведущий научный сотрудник в Институте кибернетики НАН Азербайджана. Кандидатская диссертация — 2004 г. Доцент по кафедре дифференциальных уравнений (Associate Professor at the Department of Differential Equations) — 2010 г. Докторская диссертация — 2016 г. Профессор НАН Азербайджана — 2017 г. Количество опубликованных научных работ: 132.

В настоящее время он является членом редколлегии международных научных журналов “American Journal of Applied Mathematics”, “Pure and Applied Mathematics Journal”, “Applied and Computational Mathematics”, “American Journal of Applied Mathematics and Statistics”, “Applied Mathematics and Physics”, “Journal of Mathematical Sciences and Applications” и “Universal Journal of Computational Mathematics”.

Научные публикации:

1. И. Г. Мамедов, “ О неклассической трактовке четырехмерной задачи Гурса для одного гиперболического уравнения” , Владикавказский математический журнал, 2015, Том 17, Выпуск 4, C.59-66.

2. И. Г. Мамедов, “ О корректной разрешимости задачи Дирихле для обобщенного уравнения Манжерона с негладкими коэффициентами” , Дифференциальные уравнения, 2015,том 51, №6 , с. 733-742.

3. И. Г. Мамедов, “Неклассический аналог задачи Гурса для одного трехмерного уравнения со старшей производной”, Матем. заметки,96:2 (2014),251-260.

4. И. Г. Мамедов, “О неклассической трактовке задачи Дирихле для одного псевдопараболического уравнения четвертого порядка”, Дифференциальные уравнения,2014,Том 50, Номер 3,С.417-420.

5. И. Г. Мамедов, “Нелокальная комбинированная задача типа Бицзадзе-Самарского и Самарского –Ионкина для системы псевдопараболических уравнений”, Владикавк. матем. журн., 16:1 (2014),30-41.

6. И. Г. Мамедов, “Трёхмерная интегро-многоточечная краевая задача для нагруженных вольтерро-гиперболических интегро-дифференциальных уравнений типа Бианки”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 1(26) (2012),8-20.

7. И. Г. Мамедов, “Об одной задаче Гурса в пространстве Соболева”, Изв. вузов. Матем., 2011, № 2, 54-64.

8. И. Г. Мамедов, “Формула интегрирования по частям неклассического типа при исследовании задачи Гурса для одного псевдопараболического уравнения”, Владикавк. матем. журн., 13:4 (2011),40-51.

9. И. Г. Мамедов,“Фундаментальное решение начально-краевой задачи для псевдопараболического уравнения четвертого порядка с негладкими коэффициентами”, Владикавк. матем. журн., 12:1 (2010),17-32.

10. И. Г. Мамедов, “Об одной трёхмерной задаче Гурса нового типа для гиперболического уравнения с разрывными коэффициентами”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 1(20) (2010),209-213.

11. И. Г. Мамедов, “Фундаментальное решение задачи Коши, связанной с псевдопараболическим уравнением четвертого порядка”, Ж. вычисл. матем. и матем. физ., 49:1 (2009),99-110.

12. I.G. Mamedov , “On correct solvability of a problem with loaded boundary conditions for a fourth order pseudoparabolic equation”, Memoirs on Differential Equations and Mathematical Physics ,Volume 43, 2008, 107–118.

13. И. Г. Мамедов , “Условия оптимальности некоторых процессов, описываемых псевдопараболическим уравнением при нелокальных краевых условиях”, Математичне та комп´ютерне моделювання, Серiя: Фiзико-математичнi науки. Випуск 1, 2008, 133-141.

14. I.G. Mamedov , “Neumann problem in the non-classical treatment for a pseudoparabolic equation”, pp.149-151. IV International Conference “Problems of Cybernetics and Informatics” (PCI´2012), September 12-14, 2012

15. I.G. Mamedov , “Nonlocal problem with Bitsadze-Samarsky and Samarsky- Ionkin type conditions for a system of pseudoparabolic equations ” , pp. 152-154. IV International Conference “Problems of Cybernetics and Informatics” (PCI´2012), September 12-14, 2012

16. И. Г. Мамедов , “Обобщение комбинированной задачи типа Коши-Гурса-Дарбу для одного псевдопараболического уравнения четвертого порядка”,Матем. моделирование и краев. задачи, 3 (2011), 116–119.

17. I.G. Mamedov , “On a Problem with Conditions on All Boundary for a Pseudoparabolic Equation”. American Journal of Operational Research 2013, 3(2): 51-56.

18. I.G. Mamedov, “Final-boundary value problem in the non-classical treatment for a sixth order pseudoparabolic Equation”. Applied and Computational Mathematics 2013; 2(3): 96-99. Published online July 20, 2013 DOI: 10.11648/j.acm.20130203.15

19. I.G. Mamedov, “Goursat Problem in the Non-Classical Treatment for a Sixth Order Pseudoparabolic Equation”. Universal Journal of Computational Mathematics 1(1): 15-18, 2013 DOI: 10.13189/ujcmj.2013.010103

20. I.G. Mamedov, “Cauchy Problem in the Non-Classical Treatment for One Pseudoparabolic Equation”. Universal Journal of Computational Mathematics 2(1): 1-5, 2014 DOI: 10.13189/ujcmj.2014.020101

21. I.G.Mamedov , “Contact-Boundary Value Problem in the Non-Classical Treatment for One Pseudo-Parabolic Equation”. Applied Mathematics and Physics. 2014, 2(2), 49-52 .

22. I.G.Mamedov , “3D Goursat problem for the general case in the non-classical treatment for a higher-order hyperbolic equation with dominating mixed derivative and their application to the means of 3D technology in biology”. Caspian Journal of Applied Mathematics, Ecology and Economics, 2014,Volume 2, Issue 2, pp 93-101, ISSN 1560-4055

23. I.G.Mamedov , “One 3D contact-boundary value problem in the non-classical treatment and their application to the means of 3D technology in mathematical biology“. Journal of Contemporary Applied Mathematics,2014,volume4,Issue 2, pp 42-49, ISSN 2222-5498

24. I.G.Mamedov , “3D Goursat problem in the non-classical treatment for Manjeron generalized equation with non-smooth coefficients”. Applied and Computational Mathematics , 2015, 4(1): 1-5. Published online June 30, 2014 . doi: 10.11648/j.acm.s.20150401.11 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online)

25. I.G.Mamedov, “The optimal control problem in the processes described by the Goursat problem for a hyperbolic equation in variable exponent Sobolev spaces with dominating mixed derivatives” , Elsevier: Journal of Computational and Applied Mathematics, 2016, volume 305, pp 11-17. (Co-authors: R.A. Bandaliyev, V.S. Guliyev, A.B. Sadigov).

 

Последняя редакция анкеты: 11 июля 2017, 13:19

Получить код для установки баннера на сайте, в блоге

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания”
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Современные проблемы науки и образования» список ВАК, ИФ РИНЦ = 0.953

«Фундаментальные исследования» список ВАК, ИФ РИНЦ = 1.094

«Современные наукоемкие технологии» список ВАК, ИФ РИНЦ = 0.725

«Успехи современного естествознания» список ВАК, ИФ РИНЦ = 0.869

«Международный журнал прикладных и фундаментальных исследований», ИФ РИНЦ = 0.800

«Международный журнал экспериментального образования», ИФ РИНЦ = 0.469

«European journal of natural history», ИФ РИНЦ = 0.864

«Международный студенческий научный вестник», ИФ РИНЦ = 0.445

«Рациональное питание, пищевые добавки и биостимуляторы»

Издание научной и учебно-методической литературы, ISBN, РИНЦ, DOI